Motivation – To Design a Dependable Protocol

- Quality of Service (QoS) provision in Wireless Sensor Networks (WSNs) is extremely challenging because of:
 - resource constraints of sensor nodes
 - harsh interference in practical applications
 - unknown network topology
 - various traffic pattern, e.g., heavy or light, periodic or burst
- Stringent QoS metrics are required for mission-critical applications, e.g., in wireless industry, smart grids, cooperative driving, etc.
 - high reliability
- low latency
- high energy efficiency
- high robustness against interference

- Our goal is to design a dependable protocol which is able to work under harsh interference and performs as reliably as possible under various scenarios (i.e., different traffic, different payload length).

Solution – DeCoT+

DeCoT+ is based on DeCoT [4], a dependable concurrent transmission-based protocol for WSNs. It has several mechanisms to achieve dependable communication.

- Design of DeCoT+
 - Multi-channel hopping: Scan-and-Lock mechanism
 - maintain usable links under interference
 - Force-Initiated mechanism
 - aOF/O/Coin
 - decentralize the network
 - Nego-and-Action mechanism
 - a framework designed for dependable WSNs
 - Freezing mechanism
 - node restores the forwarded packet and initiates with this packet in the next additional slot

- Implementation
 - Operating system: Contiki [1]
 - Simulation: Cojua simulator
 - Sensor nodes: TelosB
 - Testbed: FlockLab [2]

Experimental Evaluation

- Evaluation
 - Testbed: D-Cube [6]
 - Exp. duration: 480 s
 - Performance metrics
 - reliability
 - latency
 - energy consumption
 - M: message length (B)

Legend

- Synchronization period: initiated by the host
- Radio off
- Additional slot

References

